1.4 Лабораторная работа 4

МАТРИЧНАЯ ФОРМА ЗАПИСИ ЛИНЕЙНЫХ СИСТЕМ.

РЕШЕНИЕ МАТРИЧНЫХ УРАВНЕНИЙ

 

Рассмотрим систему n линейных алгебраических уравнений относительно n неизвестных

Эта система в "свернутом" виде может быть записана в виде

В соответствии с правилом умножения матриц рассмотренная система линейных уравнений может быть записана в матричном виде Ах = b, где

Матрица А, столбцами которой являются коэффициенты при соот-ветствующих неизвестных, а строками коэффициенты при неизвест-ных в соответствующем уравнении, называется матрицей системы;

Матрица-столбец b, элементами которой являются правые части уравнений системы, называется матрицей правой части или просто правой частью системы.

 Матрица-столбец х, элементы которой искомые неизвестные, называется решением системы.

Таким образом, система линейных алгебраических уравнений мо-жет быть записана в матричном виде в виде простейшего матрич-ного уравнения* Ах = b.

Если матрица системы невырождена** , то у нее существует обрат-ная матрица и тогда решение системы легко получить, умножив обе части уравнения Ах = b слева на матрицу , а поскольку  и Ex = x, то .

Порядок выполнения работы

Задание. Решите  систему линейных алгебраических уравнений в матричном виде

Указания:

1. Установите режим автоматических вычислений.

2. Введите матрицу системы и матрицу-столбец правых частей.

3. Вычислите решение системы по формуле .

4. Проверьте правильность решения умножением матрицы си-стемы на вектор-столбец решения.

5. Найдите решение системы с помощью функции Isolve и срав-ните результаты вычислений.

Фрагмент рабочего документа Mathcad, содержащий решение си-стемы, при-веден ниже.

Указание.   В приведенном документе для сравнения найдено решение системы с использованием функции решения систем линейных алгебраических уравнений lsolve(A, b)

Решите матричное уравнение Ах b (систему линейных алгебраи-ческих уравнений) из индивидуального задания к работе 3.



* Матричным уравнением называется уравнение, коэффициенты и неизвестные которого   прямоугольные матрицы соответствующей размерности

** Невырожденной называется матрица, определитель которой отличен от нуля.